Содержание
- Что это?
- Образование энергии
- Синтез АТФ
- Функции
- Что мы узнали?
Бонус
- Эукариотическая клетка
- Прокариотическая клетка
- Липиды
- Строение прокариотической клетки
- Органоиды движения АТФ
- Метаболизм
- Неклеточная форма жизни
- Клеточные включения
- Строение клеточной мембраны
- Функции клеточной мембраны
- Таблица «Функции белков»
- Строение рибосомы
- Строение и функции комплекса Гольджи
- Строение и функции клеточного центра
показать все
- 1. Ксения Шабунина 317
- 2. буба ACDC 230
- 3. Игорь Проскуренко 120
- 4. Анна Иванова 110
- 5. Михаил Варфоломеев 109
- 6. Аня Корзан 102
- 7. Марина Кулешова 101
- 8. Надя Боровая 101
- 9. Сергей 90
- 10. Семён Кальченко 82
- 1. Игорь Проскуренко 25,251
- 2. Кристина Волосочева 19,120
- 3. Ekaterina 18,721
- 4. Юлия Бронникова 18,580
- 5. Darth Vader 17,856
- 6. Алина Сайбель 16,787
- 7. Мария Николаевна 15,775
- 8. Лариса Самодурова 15,735
- 9. Liza 15,165
- 10. TorkMen 14,876
Самые активные участники недели:
- 1. Виктория Нойманн — подарочная карта книжного магазина на 500 рублей.
- 2. Bulat Sadykov — подарочная карта книжного магазина на 500 рублей.
- 3. Дарья Волкова — подарочная карта книжного магазина на 500 рублей.
Три счастливчика, которые прошли хотя бы 1 тест:
- 1. Наталья Старостина — подарочная карта книжного магазина на 500 рублей.
- 2. Николай З — подарочная карта книжного магазина на 500 рублей.
- 3. Давид Мельников — подарочная карта книжного магазина на 500 рублей.
Карты электронные(код), они будут отправлены в ближайшие дни сообщением Вконтакте или электронным письмом.
Источник
АТФ — Аденозин Три-Фосфорная кислота[править | править код]
АТФ формула
АТФ (аденозин трифосфат: аденин, связанный с тремя фосфатными группами) — молекула, которая служит источником энергии для всех процессов в организме, в том числе для движения. Сокращение мышечного волокна происходит при одновременном расщеплении молекулы АТФ, в результате чего выделяется энергия, которая идёт на осуществление сокращения. В организме АТФ синтезируется из инозина.
АТФ должна пройти через несколько ступеней, чтобы дать нам энергию. Сначала при помощи специального коэнзима отделяется один из трёх фосфатов (каждый из которых даёт десять калорий), высвобождается энергия и получается аденозин дифосфат (АДФ). Если энергии требуется больше, то отделяется следующий фосфат, формируя аденозин монофосфат (АМФ). Главным источником для производства АТФ служит глюкоза, которая в клетке инициально расщепляется на пируват и цитозол.
Во время отдыха происходит обратная реакция – при помощи АДФ, фосфагена и гликогена фосфатная группа вновь присоединяется к молекуле, формируя АТФ. Для этих целей из запасов гликогена берётся глюкоза. Вновь созданный АТФ готов к следующему использованию. В сущности АТФ работает как молекулярная батарея, сохраняя энергию, когда она не нужна, и высвобождая в случае необходимости.
Структура АТФправить | править код
Молекула АТФ состоит из трёх компонентов:
1. Рибоза (тот же самый пятиуглеродный сахар, что формирует основу ДНК)
2. Аденин (соединённые атомы углерода и азота)
3. Трифосфат
Молекула рибозы располагается в центре молекулы АТФ, край которой служит базой для аденозина. Цепочка из трёх фосфатов располагается с другой стороны молекулы рибозы. АТФ насыщает длинные, тонкие волокна, содержащие протеин, называемый миозином, который формирует основу наших мышечных клеток.
Применение в фармакологии
Для улучшения метаболизма и энергетического обеспечения тканей показан к приему препарат, в состав которого входит АТФ. При распаде компонента облегчается передача возбуждения от нейронов к сердцу. Одновременно он является медиатором, который запускает в действие аденозиновые рецепторы. АТФ обеспечивает нормальное коронарное и мозговое кровообращение, увеличивая объем и скорость перемещения плазмы по периферии.
Основные показания к приему АТФ:
- Дистрофия мышц.
- Полиомиелит (паралич спинного мозга у детей).
- Рассеянный склероз.
- Патология, развивающаяся в периферических сосудах.
- Тахикардия в наджелудочковой области.
Форма выпуска препарата зависит от степени проявляемой клинической картины. При легком течении болезни принимаются таблетки, а в сложных случаях показаны инъекции. Лечение АТФ препаратом противопоказано при следующих диагнозах:
- острый инфаркт;
- артериальная гипотензия;
- воспаление легких;
- аллергия на трифосаденину.
Дозировка средства устанавливается с учетом поставленного диагноза. При внутримышечном введении может беспокоить мигрень, тахикардия. Побочные эффекты внутривенного введения: тошнота, головная боль, общая слабость, аллергия. Не рекомендуется одновременно принимать АТФ и сердечные гликозиды. В случае передозировки возникает легкая тошнота.
Строение АТФ и биологическая роль. Функции АТФ
В любой клетке нашего организма протекают миллионы биохимических реакций. Они катализируются множеством ферментов, которые зачастую требуют затрат энергии. Где же клетка ее берет? На этот вопрос можно ответить, если рассмотреть строение молекулы АТФ – одного из основных источников энергии.
Строение АТФ и биологическая роль молекулы. Дополнительные функции аденозинтрифосфата
Также АТФ необходим для работы ионных каналов. Например, Na-K канал выкачивает 3 молекулы натрия из клетки и вкачивает 2 молекулы калия в клетку. Такой ток ионов нужен для поддержания положительного заряда на наружной поверхности мембраны, и только с помощью аденозинтрифосфата канал может функционировать. То же касается протонных и кальциевых каналов.
АТФ является предшественником вторичного мессенжера цАМФ (циклический аденозинмонофосфат) — цАМФ не только передает сигнал, полученный рецепторами мембраны клетки, но и является аллостерическим эффектором.
Сама молекула аденозинтрифосфата также может быть аллостерическим эффектором. Причем в подобных процессах антагонистом АТФ выступает АДФ: если трифосфат ускоряет реакцию, то дифосфат затормаживает, и наоборот. Таковы функции и строение АТФ.
Окислительное фосфорилирование. Дыхание клетки
Окислительное фосфорилирование – это образование аденозинтрифосфата путем передачи электронов по электронно-транспортной цепи мембраны. В результате такой передачи формируется градиент протонов на одной из сторон мембраны и с помощью белкового интегрального комплекта АТФ-синтазы идет построение молекул. Процесс протекает на мембране митохондрий.
Последовательность стадий гликолиза и окислительного фосфорилирования в митохондриях составляет общий процесс под названием дыхание. После полного цикла из 1 молекулы глюкозы в клетке образуется 36 молекул АТФ.
Интересные факты об АТФ
— В среднестатистической клетке содержится 0,04% аденозинтрифосфата от всей массы. Однако самое большое значение наблюдается в мышечных клетках: 0,2-0,5%.
— В клетке около 1 млрд молекул АТФ.
— Каждая молекула живет не больше 1 минуты.
— Одна молекула аденозинтрифосфата обновляется в день 2000-3000 раз.
— В сумме за сутки организм человека синтезирует 40 кг аденозинтрифосфата, и в каждый момент времени запас АТФ составляет 250 г.
Строение АТФ и биологическая роль молекулы. Дополнительные функции аденозинтрифосфата
Кроме энергетической, АТФ может выполнять множество других функций в клетке. Наряду с другими нуклеотидтрифосфатами трифосфат участвует в построении нуклеиновый кислот. В этом случае АТФ, ГТФ, ТТФ, ЦТФ и УТФ являются поставщиками азотистых оснований. Это свойство используется в процессах и транскрипции.
Также АТФ необходим для работы ионных каналов. Например, Na-K канал выкачивает 3 молекулы натрия из клетки и вкачивает 2 молекулы калия в клетку. Такой ток ионов нужен для поддержания положительного заряда на наружной поверхности мембраны, и только с помощью аденозинтрифосфата канал может функционировать. То же касается протонных и кальциевых каналов.
АТФ является предшественником вторичного мессенжера цАМФ (циклический аденозинмонофосфат) — цАМФ не только передает сигнал, полученный рецепторами мембраны клетки, но и является аллостерическим эффектором. Аллостерические эффекторы — это вещества, которые ускоряют или замедляют ферментативные реакции. Так, циклический аденозинтрифосфат ингибирует синтез фермента, который катализирует расщепление лактозы в клетках бактерии.
Сама молекула аденозинтрифосфата также может быть аллостерическим эффектором. Причем в подобных процессах антагонистом АТФ выступает АДФ: если трифосфат ускоряет реакцию, то дифосфат затормаживает, и наоборот. Таковы функции и строение АТФ.
гидролиз
Гидролиз АТФ — это реакция, которая включает распад молекулы в присутствии воды. Реакция представляется следующим образом:
АТФ + Вода ⇋ АДФ + ПЯ + энергия. Где, термин PЯ оно относится к группе неорганических фосфатов, а ADP представляет собой аденозиндифосфат
Обратите внимание, что реакция обратима
гидролиз АТФ это явление, которое включает высвобождение огромной энергии суммы. Разрывная любые ссылки пирофосфаты результаты в выпуске 7 ккал на моль — в частности 7.3 АТФ в АДФ и 8.2 для получения аденозин монофосфат (АМФ) из АТФ. Это соответствует 12000 калорий на моль АТФ.
Почему происходит это высвобождение энергии??
Поскольку продукты гидролиза намного более стабильны, чем исходное соединение, то есть АТФ.
Необходимо отметить, что только гидролиз, который происходит на пирофосфатных связях с образованием АДФ или АМФ, приводит к выработке энергии в важных количествах..
Гидролиз других связей в молекуле не обеспечивает столько энергии, за исключением гидролиза неорганического пирофосфата, который имеет большое количество энергии.
Выделение энергии из этих реакций используется для проведения метаболических реакций внутри клетки, поскольку многие из этих процессов требуют энергии для функционирования, как на начальных этапах путей деградации, так и в биосинтезе соединений..
Например, при метаболизме глюкозы начальные стадии включают фосфорилирование молекулы. На следующих шагах генерируется новый ATP, чтобы получить положительный чистый доход.
С энергетической точки зрения, существуют другие молекулы, у которых высвобождение энергии больше, чем у АТФ, включая 1,3-бифосфоглицерат, карбамилфосфат, креатининфосфат и фосфоенолпируват..
Понятие метаболизма
Метаболизм — совокупность всех химических реакций, протекающих в живом организме. Значение метаболизма состоит в создании необходимых организму веществ и обеспечении его энергией.
Выделяют две составные части метаболизма — катаболизм и анаболизм.
Составные части метаболизма
Часть
Характеристика
Примеры
Затраты энергии
Катаболизм (энергетический обмен, диссимиляция)
Совокупность химических реакций, приводящих к образованию простых веществ из более сложных
Гидролиз полимеров до мономеров и расщепление последних до низкомолекулярных соединений углекислого газа, воды, аммиака и других веществ
Энергия выделяется
Анаболизм (пластический обмен, ассимиляция)
Совокупность химических реакций синтеза сложных веществ из более простых
Образование углеводов из углекислого газа и воды в процессе фотосинтеза, реакции матричного синтеза
Энергия поглощается
Процессы пластического и энергетического обмена неразрывно связаны между собой. Все синтетические (анаболические) процессы нуждаются в энергии, поставляемой в ходе реакций диссимиляции. Сами же реакции расщепления (катаболизма) протекают лишь при участии ферментов, синтезируемых в процессе ассимиляции.
Роль ФТФ в метаболизме
Энергия, высвобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме аденозинтрифосфата (АТФ). По своей химической природе АТФ относится к мононуклеотидам.
АТФ (аденозинтрифосфорная кислота) — мононуклеотид, состоящий из аденина, рибозы и трёх остатков фосфорной кислоты, соединяющихся между собой макроэргическими связями.
В этих связях запасена энергия, которая высвобождается при их разрыве:
АТФ + H2O → АДФ + H3PO4 + Q1
АДФ + H2O → АМФ + H3PO4 + Q2
АМФ + H2O → аденин + рибоза + H3PO4 + Q3,
где АТФ — аденозинтрифосфорная кислота; АДФ — аденозиндифосфорная кислота; АМФ — аденозинмонофосфорная кислота; Q1 = Q2 = 30,6 кДж; Q3 = 13,8 кДж.
Запас АТФ в клетке ограничен и пополняется благодаря процессу фосфорилирования. Фосфорилирование — присоединение остатка фосфорной кислоты к АДФ (АДФ + Ф → АТФ). Он происходит с разной интенсивностью при дыхании, брожении и фотосинтезе. АТФ обновляется чрезвычайно быстро (у человека продолжительность жизни одной молекулы АТФ менее 1 мин).
Энергия, накопленная в молекулах АТФ, используется организмом в анаболических реакциях (реакциях биосинтеза). Молекула АТФ является универсальным хранителем и переносчиком энергии для всех живых существ.
Натрия аденозинтрифосфат
– трифосаденин (натрия аденозинтрифосфат) (triphosadenine)
Состав и форма выпуска препарата
Раствор для в/в введения бесцветный или слегка желтоватый, прозрачный.
* динатрия аденозинтрифосфата дигидрат в пересчете на аденозинтрифосфорную кислоту.
Вспомогательные вещества: натрия карбонат безводный – 4.4 мг, натрия гидрокарбонат – 8 мг, динатрия эдетата дигидрат – 0.2 мг, пропиленгликоль – 0.1 мг, вода д/и – до 1 мл.
1 мл – ампулы (5) – пачки картонные.1 мл – ампулы (10) – пачки картонные.1 мл – ампулы (5) – упаковки ячейковые контурные из пленки поливинилхлоридной (1) – пачки картонные.1 мл – ампулы (5) – упаковки ячейковые контурные из пленки поливинилхлоридной (2) – пачки картонные.
1 мл – ампулы (5) – упаковки ячейковые контурные из пленки поливинилхлоридной (4) – пачки картонные (для стационаров).1 мл – ампулы (5) – упаковки ячейковые контурные из пленки поливинилхлоридной (5) – пачки картонные (для стационаров).
1 мл – ампулы (5) – упаковки ячейковые контурные из пленки поливинилхлоридной (10) – пачки картонные (для стационаров).1 мл – ампулы (5) – упаковки ячейковые контурные из пленки поливинилхлоридной (50) – пачки картонные (для стационаров).
1 мл – ампулы (5) – упаковки ячейковые контурные из пленки поливинилхлоридной (100) – пачки картонные (для стационаров).
Фармакологическое действие
Средство, улучшающее метаболизм и энергообеспечение тканей. АТФ является естественным компонентом тканей организма – участвует во многих процессах обмена веществ. При распаде АТФ на АДФ и неорганический фосфат высвобождается энергия, необходимая для мышечного сокращения и различных биохимических процессов.
АТФ участвует в передаче возбуждения в адренергических и холинергических синапсах, облегчает передачу возбуждения с блуждающего нерва на сердце. По-видимому, АТФ – один из медиаторов, возбуждающих аденозиновые рецепторы.
Усиливает мозговое и коронарное кровообращение, способствует увеличению периферического кровообращения.
Трифосаденин – производное аденозина. Аденозин является агонистом пуринергических рецепторов, активация которых приводит к угнетению деполяризации процессов проведения электрических импульсов в синусовом и AV-узлах. Этот эффект лежит в основе антиаритмического действия трифосаденина при наджелудочковых тахикардиях. Действует кратковременно в течение нескольких секунд.
Фармакокинетика
После парентерального введения проникает в клетки органов, где расщепляется на аденозин и неорганический фосфат с высвобождением энергии. В дальнейшем продукты распада включаются в ресинтез АТФ.
Острый инфаркт миокарда, тяжелая артериальная гипотензия, тяжелая брадикардия, СССУ, AV-блокада II-III степени (за исключением пациентов с искусственным водителем ритма), острая и хроническая сердечная недостаточность в стадии декомпенсации, ХОБЛ, бронхиальная астма, синдром удлиненного интервала QT, беременность, период грудного вскармливания, возраст до 18 лет, повышенная чувствительность к трифосаденину.
С осторожностью
Брадикардия, AV-блокада I степени, блокада ножек пучка Гиса, фибрилляция и трепетание предсердий, аретриальная гипотензия, ИБС, гиповолемия, перикардит, стеноз клапанов сердца, артериовенозный шунт “слева-направо”, недостаточность мозгового кровообращения, состояния после пересадки сердца (менее 1 года).
Дозировка
Вводят в/в. Дозу устанавливают индивидуально, в зависимости от показаний.
При в/м введении: возможны головная боль, тахикардия, увеличение диуреза, гиперурикемия.
При в/в введении: возможны тошнота, гиперемия кожи лица, головная боль, слабость.
Аллергические реакции: редко – зуд, гиперемия кожи.
Лекарственное взаимодействие
При одновременном применении с сердечными гликозидами повышается риск развития побочных эффектов (в т.ч. аритмогенного действия).
Применение в пожилом возрасте
С осторожностью применять у пациентов пожилого возраста. Описание препарата Натрия аденозинтрифосфат основано на официально утвержденной инструкции по применению и утверждено компанией–производителем. Описание препарата Натрия аденозинтрифосфат основано на официально утвержденной инструкции по применению и утверждено компанией–производителем
Описание препарата Натрия аденозинтрифосфат основано на официально утвержденной инструкции по применению и утверждено компанией–производителем.
Обнаружили ошибку? Выделите ее и нажмите Ctrl+Enter.
Получение АТФ
АТФ может быть получен двумя путями: окислительное фосфорилирование и фосфорилирование на уровне субстрата. Первый требует кислорода, а второй не нуждается в нем. Примерно 95% образовавшегося АТФ происходит в митохондриях.
Окислительное фосфорилирование
Окислительное фосфорилирование включает процесс окисления питательных веществ в две фазы: получение восстановленных коферментов NADH и FADH2 производные витаминов.
Восстановление этих молекул требует использования водорода из питательных веществ. У жиров выработка коэнзимов замечательна благодаря огромному количеству водородов, которые они имеют в своей структуре, по сравнению с пептидами или углеводами..
Хотя есть несколько способов получения коферментов, наиболее важный путь — цикл Кребса. Впоследствии восстановленные коферменты концентрируются в дыхательных цепях, расположенных в митохондриях, которые переносят электроны к кислороду.
Цепь переноса электронов образована серией белков, связанных с мембраной, которые накачивают протоны (H +) наружу (см. Изображение). Эти протоны снова проникают через мембрану через другой белок, АТФ-синтазу, отвечающую за синтез АТФ..
Другими словами, мы должны уменьшить коферменты, больше АДФ и кислорода вырабатывают воду и АТФ.
Фосфорилирование на уровне субстрата
Фосфорилирование на уровне субстрата не так важно, как механизм, описанный выше, и, поскольку оно не требует молекул кислорода, оно обычно связано с ферментацией. Таким образом, несмотря на то, что он очень быстрый, он извлекает мало энергии, если сравнить его с процессом окисления, он будет примерно в 15 раз меньше
В нашем организме ферментативные процессы происходят на мышечном уровне. Эта ткань может функционировать без кислорода, поэтому вполне возможно, что молекула глюкозы разлагается до молочной кислоты (например, когда мы занимаемся спортом)..
В ферментации конечный продукт все еще обладает энергетическим потенциалом, который можно извлечь. В случае ферментации в мышцах содержание углерода в молочной кислоте находится на том же уровне восстановления, что и в исходной молекуле: глюкоза.
Таким образом, производство энергии происходит путем образования молекул, которые имеют высокоэнергетические связи, в том числе 1,3-бифосфоглират и фосфоенолпируват.
Например, в гликолизе гидролиз этих соединений связан с образованием молекул АТФ, отсюда и термин «на уровне субстрата»..
функции
АТФ играет незаменимую роль в энергетическом обмене практически всех живых организмов. По этой причине его часто называют энергетической валютой, поскольку его можно постоянно тратить и пополнять всего за несколько минут..
Прямой или косвенный, АТФ обеспечивает энергию для сотен процессов, в дополнение к действию в качестве донора фосфата.
В общем, АТФ действует как сигнальная молекула в процессах, происходящих внутри клетки, необходимо синтезировать компоненты ДНК и РНК и для синтеза других биомолекул участвует в трафике через мембраны, среди других.
Использование АТФ можно разделить на основные категории: транспорт молекул через биологические мембраны, синтез различных соединений и, наконец, механическая работа..
Функции СПС очень широки. Кроме того, он вовлечен в так много реакций, что было бы невозможно назвать их всех. Поэтому мы обсудим три конкретных примера, иллюстрирующих каждое из трех упомянутых применений..
Энергоснабжение для транспорта натрия и калия через мембрану
Ячейка является чрезвычайно динамичной средой, которая требует поддержания определенных концентраций. Большинство молекул не попадают в клетку случайно или случайно. Для того чтобы молекула или вещество могли проникнуть внутрь, оно должно делать это посредством своего конкретного переносчика..
Транспортеры — это белки, которые пересекают мембрану и функционируют как клеточные «привратники», контролирующие поток материалов. Следовательно, мембрана является полупроницаемой: она позволяет некоторым соединениям проникать, а другим — нет..
Одним из самых известных видов транспорта является натриево-калиевый насос. Этот механизм классифицируется как активный транспорт, так как движение ионов происходит против их концентрации, и единственный способ выполнить это движение — ввести энергию в систему в форме АТФ..
Подсчитано, что одна треть АТФ, образующегося в клетке, используется для поддержания работы насоса. Ионы натрия постоянно перекачиваются на поверхность клетки, а ионы калия — наоборот.
Логично, что использование АТФ не ограничивается транспортировкой натрия и калия. Есть другие ионы, такие как кальций, магний и другие, которые нуждаются в этой энергетической валюте, чтобы войти.
Участие в синтезе белка
Молекулы белка образованы аминокислотами, связанными между собой пептидными связями. Для их формирования требуется разрыв четырех высокоэнергетических связей. Другими словами, для образования белка средней длины необходимо гидролизовать значительное количество молекул АТФ..
Синтез белков происходит в структурах, называемых рибосомами. Они способны интерпретировать код, которым обладает РНК-мессенджер, и транслировать его в аминокислотную последовательность, АТФ-зависимый процесс.
В наиболее активных клетках синтез белка может направлять до 75% АТФ, синтезированного в этой важной работе. С другой стороны, клетка не только синтезирует белки, она также нуждается в липидах, холестерине и других необходимых веществах, и для этого требуется энергия, содержащаяся в связях АТФ.
С другой стороны, клетка не только синтезирует белки, она также нуждается в липидах, холестерине и других необходимых веществах, и для этого требуется энергия, содержащаяся в связях АТФ..
Обеспечить энергию для передвижения
Механическая работа является одной из важнейших функций СПС. Например, чтобы наше тело могло выполнять сокращение мышечных волокон, необходимо наличие большого количества энергии..
В мышцах химическая энергия может быть преобразована в механическую энергию благодаря реорганизации протеинов с сокращающей способностью, которые ее формируют. Длина этих структур изменена, укорочена, что создает напряжение, которое приводит к генерации движения.
У других организмов движение клеток также происходит благодаря наличию АТФ. Например, движение ресничек и жгутиков, которое позволяет перемещать определенные одноклеточные организмы, происходит посредством использования АТФ.
Другое конкретное движение — амебное, которое включает в себя выпячивание псевдоподы на концах клетки. Несколько типов клеток используют этот механизм локомоции, включая лейкоциты и фибробласты.
В случае половых клеток локомоция необходима для эффективного развития эмбриона. Эмбриональные клетки перемещаются на значительные расстояния от места их происхождения до региона, в котором они должны создавать специфические структуры..
АТФ: энергетическая валюта
В мышечных клетках также присутствует высокоэнергетический элемент – фосфат креатина, используемый для восстановления уровня АТФ после краткосрочной интенсивной активности. Энзимкреатинкиназа отбирает фосфатную группу у креатина фосфата и мгновенно передает ее АДФ для формирования АТФ. Таким образом, мышечная клетка модифицирует АТФ в АДФ, а фосфаген стремительно преобразовывает АДФ до АТФ. Уровень креатина фосфата понижается уже через 10 секунд высокоинтенсивной активности, затем уровень энергии падает. Ярким примером деятельности такой системы является спринтерская стометровка.
Препарат АТФ
Как расшифровывается АТФ, понятно, но что происходит в организме при снижении ее концентрации, ясно не всем. Через молекулы аденозинтрифосфорной кислоты под влиянием негативных факторов в клетках реализуются биохимические изменения. По этой причине люди с дефицитом АТФ страдают сердечно-сосудистыми заболеваниями, у них развивается дистрофия мышечных тканей. Чтобы обеспечить организму необходимый запас аденозинтрифосфата, назначаются медикаменты с его содержанием.
Лекарство АТФ – это препарат, который назначают для лучшего питания клеток тканей и кровоснабжения органов. Благодаря ему в организме пациента происходит восстановление работы сердечной мышцы, снижаются риски развития ишемии, аритмии. Прием АТФ улучшает процессы кровообращения, снижает опасность возникновения инфаркта миокарда. Благодаря улучшению данных показателей, в норму приводится общее физическое здоровье, у человека повышается работоспособность.
АТФ мышц
Что такое АТФ?
АТФ (аденозинтрифосфат, аденозинтрифосфорная кислота) – основное макроэргическое соединение организма. Состоит из аденина (азотистого основания), рибозы (углевод) и трех последовательно расположенных фосфатных остатков, причем второй и третий фосфатные остатки присоединяются макроэргической связью. Структура АТФ выглядит следующим образом (рис.1).
Рис. 1. Структура АТФ
История открытия АТФ
АТФ был открыт(а) в 1929 году немецким биохимиком Карлом Ломаном (Karl Lohmann) и, независимо Сайрусом Фиске (Cyrus Fiske) и Йеллапрагада Субба Рао (Yellapragada Subba Rao) из Гарвардской медицинской школы. Однако структура АТФ была установлена только спустя несколько лет. Владимир Александрович Энгельгардт в 1935 году показал, что для сокращения мышц необходимо присутствие АТФ. В 1939 году В. А. Энгельгардт совместно со своей женой М. Н. Любимовой предъявили доказательства, что миозин проявляет ферментную активность при этом расщепляется АТФ и высвобождается энергия. Фриц Альберт Липманн (Fritz Albert Lipmann) в 1941 году показал, что АТФ является основным переносчиком энергии в клетке. Ему принадлежит фраза «богатые энергией фосфатные связи». В 1948 году Александр Тодд (Alexander Todd) (Великобритания) синтезировал АТФ. В 1997 году Пол Д. Бойер (Paul D. Boyer) и Джон Э. Уокер (John E. Walker) получили Нобелевскую премию по химии за разъяснение ферментативного механизма, лежащего в основе синтеза АТФ.
Содержание АТФ в мышечных волокнах
Количество АТФ в тканях организма человека относительно невелико, поскольку он (она) в тканях не запасается. В мышечных волокнах содержится 5 ммоль на кг сырой ткани или 25 ммоль на кг сухой мышечной ткани.
Реакция гидролиза
Непосредственным источником энергии при мышечной деятельности является АТФ, который (ая) находится в саркоплазме мышечных волокон. Освобождение энергии происходит в результате реакции гидролиза АТФ.
Гидролиз АТФ – реакция, протекающая в мышечных волокнах, при которой АТФ, взаимодействуя с водой распадается на АДФ и фосфорную кислоту. При этом выделяется энергия. Гидролиз АТФ ускоряется ферментом АТФ-азой. Этот фермент находится на каждой миозиновой головке толстого филамента.
Реакция гидролиза АТФ имеет следующий вид:
АТФ+Н2О→АДФ+Н3РО4 + энергия
В результате гидролиза 1 моль АТФ выделяется энергия, равная 42-50 кДж (10-12 ккал). Скорость протекания реакции гидролиза повышают ионы кальция. Следует отметить, что АДФ (аденозиндифосфат) в мышечных волокнах выполняет роль универсального акцептора (приёмника) высокоэнергетического фосфата и используется для образования АТФ.
Фермент АТФ-аза
Фермент АТФ-аза расположен на миозиновых головках, что играет существенную роль в сокращении мышечных волокон. Активность фермента АТФ-азы лежит в основе классификации мышечных волокон на медленные (I тип), промежуточные (IIA тип) и быстрые (IIB тип).
Химическая энергия, выделяемая в результате гидролиза в мышечных волокнах, расходуется на: сокращение мышечных волокон (взаимодействие белков актина и миозина) и на их расслабление (работу кальциевого и натрий-калиевого насосов). При взаимодействии с актином одна молекула миозина за одну секунду гидролизует 10 молекул АТФ.
Запасы АТФ в мышечных волокнах невелики и могут обеспечить выполнение интенсивной работы в течение 1-2 с. Дальнейшая мышечная деятельность осуществляется благодаря быстрому восстановлению (ресинтезу) АТФ, поэтому при сокращении мышечных волокон в них одновременно протекают два процесса: гидролиз АТФ, дающий необходимую энергию и ресинтез АТФ, восполняющий запасы АТФ в мышечных волокнах.
Ресинтез АТФ
Ресинтез АТФ – синтез АТФ в мышечных волокнах из различных энергетических субстратов во время физической работы. Его формула выглядит следующим образом:
АДФ+фосфат+энергия → АТФ
Ресинтез АТФ может осуществляться двумя путями:
- без участия кислорода (анаэробный путь);
- с участием кислорода (аэробный путь).
Если в саркоплазме мышечных волокон недостаточно АТФ, то затрудняется процесс их расслабления. Возникают судороги.
Более подробно строение и функции мышц описаны в моих книгах «Гипертрофия скелетных мышц человека» и «Биомеханика мышц»
Литература
- Михайлов С.С. Спортивная биохимия. – М.: Советский спорт, 2009.– 348 с.
- Волков Н.И., Несен Э.Н., Осипенко А.А., Корсун С.Н. Биохимия мышечной деятельности.- Киев: Олимпийская литература, 2000.- 504 с.
Макроэргические соединения – химические соединения, содержащие связи, при гидролизе которых происходит освобождение значительного количества энергии.
Значение АТФ для человеческого организма
Для компенсации недостатка аденозинтрифосфорной кислоты в организме человека назначается препарат АТФ Лонг, обладающий широким спектром действия.
АТФ Лонг это лекарственный препарат, который в продажу поступает в порошкообразном виде или в форме таблеток, а для инъекций используется его раствор. Источником получения молекулы АТФ для производства медицинского препарата служит мышечная ткань животных. Вместе с ней в состав препарата АТФ Лонг входят ионы калия, ионы магния, а также гистидин – важная аминокислота, необходимая для восстановления поврежденных тканей и для развития организма в период роста.
Аденозинтрифосфат входит в состав всех тканей человеческого организма. Это вещество, образованию которого предшествует процесс окисления и расщепления сложных углеводов в организме. Больше всего АТФ содержится гладкой ткани мышц, а меньше всего – в скелетной мышце. Без АТФ не происходил бы процесс обмена веществ, и не вырабатывалась бы энергия, так необходимая всем группам мышц для нормальной работы и развития. Поэтому недостаток данного вещества в организме провоцирует ряд заболеваний: дистрофию, ишемическую болезнь сердца, нарушение кровообращения в области головного мозга и многие другие.
Механизм изменения участка связывания
В 60-70 годах XX века Пол Бойер предположил, что синтез АТФ связан с изменениями конфигурации АТФ-синтазы, вызываемыми вращением γ-субъединицы, так называемый механизм изменения участка связывания («перевертыш», англ. flip-flop). Исследовательской группе под руководством Джона Э. Уокера, относившейся тогда к Лаборатории молекулярной биологии в Кембридже удалось выделить АТФ-синтазный каталитический комплекс F1 в кристаллической форме. На тот момент это была самая крупная из известных науке асимметричная белковая структура. Ее исследования показали, что модель вращающегося катализатора, предложенная Бойером, соответствует действительности. За это открытие Бойер и Уокер получили половину Нобелевской премии по химии в 1997 году. Вторую половину получил Йенс Кристиан Скоу «за первое открытие фермента, осуществляющего транспорт ионов — Na+,K±аденозинтрифосфатазы».
Файл:ATPsyn.gif
Механизм действия АТФ-синтазы. АТФ показан красным, АДФ и фосфат — розовым, вращающаяся субъединица γ — черным.
Кристалл F1 состоит из перемежающихся α- и β-субъединиц (по 3 каждого вида), расположенных как дольки апельсина вокруг асимметричной γ-субъединицы.
В соответствии с принятой моделью синтеза АТФ (также называемой моделью непостоянного катализа), градиент электрического поля, направленный поперек внутренней митохондриальной мембраны и обусловленный электронной транспортной цепочкой, заставляет протоны проходить сквозь мембрану через АТФ-синтазный компонент FO.
Часть компонента FO (кольцо из c-субъединиц) вращается, когда протоны проходят через мембрану. Это c-кольцо жестко связано с асимметричной центральной ножкой (состоящей в основном из γ-субъединицы), которая в свою очередь вращается внутри α3β3-участка компонента F1. Это приводит к тому, что три участка катализа, связывающиеся с нуклеотидами, претерпевают изменения в конфигурации, приводящие к синтезу АТФ.
Основные субъединицы (α3β3) компонента F1 соединены дополнительной боковой ножкой с неподвижным участком FO, что предотвращает их вращение вместе с γ-субъединицей.
Структура неповрежденной АТФ-синтазы с низкой точностью выявлена при помощи электронной криомикроскопии (ЭКМ). Показано, что боковая ножка — это гибкая перемычка, похожая на канат, наматывающаяся на комплекс во время его работы.
В определенных условиях каталитическая реакция может протекать в обратном направлении, при этом гидролиз АТФ вызывает прокачку протонов через мембрану.
В механизме изменения участка связывания задействован активный участок β-субъединицы, последовательно проходящий через три состояния.
В «открытом» состоянии АДФ и фосфат подходят к активному участку. Затем белок охватывает эти молекулы и свободно связывается с ними («свободное» состояние). Следующее изменение формы белка прижимает молекулы друг к другу («тесное» состояние), что приводит к формированию АТФ. Наконец, активный участок снова переходит в «открытое» состояние, освобождает АТФ и связывает следующую молекулу АДФ и фосфата, после чего цикл производства АТФ повторяется.