Электрический заряд. электроскоп

Cтепень точности закона Кулона

Закон Кулона — экспериментально установленный факт. Его справедливость неоднократно подтверждалась всё более точными экспериментами. Одним из направлений таких экспериментов является проверка того, отличается ли показатель степени r в законе от 2. Для поиска этого отличия используется тот факт, что если степень точно равна двум, то поле внутри полости в проводнике отсутствует, какова бы ни была форма полости или проводника.

Эксперименты, проведённые в 1971 г. в США Э. Р. Уильямсом, Д. Е. Фоллером и Г. А. Хиллом, показали, что показатель степени в законе Кулона равен 2 с точностью до .

Для проверки точности закона Кулона на внутриатомных расстояниях У. Ю. Лэмбом и Р. Резерфордом в 1947 г. были использованы измерения относительного расположения уровней энергии водорода. Было установлено, что и на расстояниях порядка атомных 10−8 см, показатель степени в законе Кулона отличается от 2 не более чем на 10−9.

Коэффициент в законе Кулона остается постоянным с точностью до 15·10−6.

Поправки к закону Кулона в квантовой электродинамике

На небольших расстояниях (порядка комптоновской длины волны электрона, ≈3.86·10−13 м, где  — масса электрона,  — постоянная Планка,  — скорость света) становятся существенными нелинейные эффекты квантовой электродинамики: на обмен виртуальными фотонами накладывается генерация виртуальных электрон-позитронных (а также мюон-антимюонных и таон-антитаонных) пар, а также уменьшается влияние экранирования (см. перенормировка). Оба эффекта ведут к появлению экспоненциально убывающих членов порядка в выражении для потенциальной энергии взаимодействия зарядов и, как результат, к увеличению силы взаимодействия по сравнению с вычисляемой по закону Кулона. Например, выражение для потенциала точечного заряда в системе СГС, с учётом радиационных поправок первого порядка принимает вид:

где  — комптоновская длина волны электрона,  — постоянная тонкой структуры и . На расстояниях порядка ~ 10−18 м, где  — масса W-бозона, в игру вступают уже электрослабые эффекты.

В сильных внешних электромагнитных полях, составляющих заметную долю от поля пробоя вакуума (порядка ~1018 В/м или ~109 Тл, такие поля наблюдаются, например, вблизи некоторых типов нейтронных звёзд, а именно магнитаров) закон Кулона также нарушается в силу дельбрюковского рассеяния обменных фотонов на фотонах внешнего поля и других, более сложных нелинейных эффектов. Это явление уменьшает кулоновскую силу не только в микро- но и в макромасштабах, в частности, в сильном магнитном поле кулоновский потенциал падает не обратно пропорционально расстоянию, а экспоненциально.

Закон Кулона и поляризация вакуума

Явление поляризации вакуума в квантовой электродинамике заключается в образовании виртуальных электронно-позитронных пар. Облако электронно-позитронных пар экранирует электрический заряд электрона. Экранировка растет с ростом расстояния от электрона, в результате эффективный электрический заряд электрона является убывающей функцией расстояния . Эффективный потенциал, создаваемый электроном с электрическим зарядом , можно описать зависимостью вида . Эффективный заряд зависит от расстояния по логарифмическому закону:

где,

— т. н. постоянная тонкой структуры ≈7.3·10−3;

 — т. н. классический радиус электрона ≈2.8·10−13 см.

Эффект Юлинга

Явление отклонения электростатического потенциала точечных зарядов в вакууме от значения закона Кулона известно как эффект Юлинга, который впервые вычислил отклонения от закона Кулона для атома водорода. Эффект Юлинга даёт поправку к лэмбовскому сдвигу 27 мггц.

В сильном электромагнитном поле вблизи сверхтяжелых ядер с зарядом осуществляется перестройка вакуума, аналогичная обычному фазовому переходу. Это приводит к поправкам к закону Кулона.

Где закон Кулона применяется на практике

Основной закон электростатики — это важнейшее открытие Шарля Кулона, которое нашло своё применение во многих областях.

Работы известного физика использовались в процессе изобретения различных устройств, приборов, аппаратов. К примеру, молниеотвод.

При помощи молниеотвода жилые дома, здания защищают от попадания молнии во время грозы. Таким образом, повышается степень защиты электрического оборудования.

Молниеотвод работает по следующему принципу: во время грозы на земле постепенно начинают скапливаться сильные индукционные заряды, которые поднимаются вверх и притягиваются к облакам. При этом на земле образуется немаленькое электрическое поле. Вблизи молниеотвода электрическое поле становится сильнее, благодаря чему от острия устройства зажигается коронный электрический заряд.

Далее образованный на земле заряд начинает притягиваться к заряду облака с противоположным знаком, как и должно быть согласно закону Шарля Кулона. После этого воздух проходит процесс ионизации, а напряжённость электрического поля становится меньше возле конца молниеотвода. Таким образом, риск попадания молнии в здание минимален.

На основе закона Кулона было разработано устройство под названием “Ускоритель частиц”, которое пользуется большим спросом сегодня.

В данном приборе создано сильное электрическое поле, которое увеличивает энергию попадающих в него частиц.

Напряженность электростатического поля

\(~\vec E = \frac{\vec F}{q}\) ,

где \(~\vec E\) – напряженность электрического поля в данной точке пространства (Н/Кл или В/м), \(~\vec F\) – сила, с которой электрическое поле действует на заряд q, помещенный в данную точку пространства (Н), q – заряд (Кл).

Если заряд q > 0, то напряженность поля направлена в ту же сторону, что и сила, с которой электрическое поле действует на этот заряд, и наоборот. Если заряд q

\(~E_x = \frac{F_x}{q}\) ,

где Еx – проекция напряженность электрического поля в данной точке пространства на ось (Н/Кл или В/м), Fx – проекция силы, с которой электрическое поле действует на заряд q, на ось (Н), q – заряд (Кл).

Аналогичное уравнение можно записать и в проекциях на ось 0Y.

Силы электростатического взаимодействия направлены вдоль линии, соединяющей взаимодействующие точечные заряды, причем одноименные заряды отталкиваются, а разноименные заряды притягиваются.

Направление вектора напряженности в данной точке пространства совпадает с направлением силы, с которой поле действует на пробный (положительный) заряд, помещенный в эту точку поля (рис. 1 а, б, где Q – заряд, создающий поле, q – пробный (положительный) заряд, помещенный в точку А, ЕA – напряженность поля, созданного зарядом Q, в точке А. Для наглядности, вектора смещены относительно друг друга).

Чем дальше от заряда Q, создающего поля, тем напряженность поля меньше.

Рис. 1

Можно определять направление напряженности точечных зарядов в некоторой точке А пространства и без пробных зарядов:

  • если поле создано положительным зарядом q, то напряженность в точке С направлена из точки С от заряда q, вдоль линии, соединяющей заряд q и точку С,
  • если поле создано отрицательным зарядом q, то напряженность в точке С направлена из точки C к заряду q, вдоль линии, соединяющей заряд q и точку С.

И наоборот:

  • если напряженность в точке С направлена из точки С от заряда q, то поле создано положительным зарядом q,
  • если напряженность в точке С направлена из точки С к заряду q, то поле создано отрицательным зарядом q.

Значение напряженности электрического поля, созданного точечным зарядом q, в данной точке пространства, находящейся на расстоянии r от заряда (рис. 2), равно

\(~E = k \cdot \frac{|q|}{r^2}\) ,

где k = 9·109 Н·м2/Кл2 – коэффициент пропорциональности.

Рис. 2

Напряженность электрического поля системы точечных зарядов q1, q2, …, qN в некоторой точке пространства равна геометрической сумме напряженностей полей \(~\vec E_1 , \vec E_2 , \ldots , \vec E_N\) , создаваемых каждым из этих зарядов в отдельности в той же точке:

\(~\vec E = \vec E_1 + \vec E_2 + \ldots + \vec E_N\) .

Значение напряженности электрического поля, созданного сферой радиуса R, имеющей заряд q, в точке C пространства, находящейся на расстоянии l от центра сферы (рис. 3), равно

\(~E = k \cdot \frac{|q|}{l^2}\) , если lR ,


Е = 0, если l < R ,

где k = 9·109 Н·м2/Кл2 – коэффициент пропорциональности.

Если l ≥ R, то напряженности электрического поля, созданного шаром радиуса R, так же будет равна \(~E = k \cdot \frac{|q|}{l^2}\) .

Рис. 3

\(~\sigma = \frac{q}{s}\) ,

где σ – поверхностная плотность электрического заряда, распределенного по поверхности тела площади S (Кл/м2), q – заряд тела (Кл), S – площадь (м2).

Значение напряженности электрического поля, созданного заряженной бесконечной пластиной с поверхностной плотностью заряда σ, равно

\(~E = \frac{\sigma}{2 \varepsilon_0}\) ,

где ε ≈ 8,85·10-12 Кл2/Н·м2 – электрическая постоянная.

Силовые линии

Силовая линия – это направленная линия в пространстве, касательная к которой в каждой точке совпадает по направлению с вектором напряженности электрического поля в этой точке (рис. 4).

Силовые линии рисуют, учитывая следующие свойства:

  • Силовые линии электростатического поля начинаются на положительных зарядах и заканчиваются на отрицательных.
  • Силовые линии перпендикулярны поверхности.
  • Силовые линии не пересекаются и не имеют изломов.
  • О величине напряженности электрического поля можно судить по густоте силовых линий: там, где силовые линии гуще, напряженность больше, и наоборот.

Рис. 4

Однородное поле – это поле, вектор напряженности которого в каждой точке пространства одинаков (по модулю и направлению). Графически однородное поле представляет собой набор параллельных равноотстоящих друг от друга силовых линий.

Закон Кулона

Закон Кулона позволяет количественно описать процесс, при котором взаимодействуют заряженные тела. Это фундаментальный закон – утверждение было доказано экспериментальным путем, а не является следствием природных закономерностей.

Закон Кулона справедлив в том случае, когда точечные заряды неподвижны и находятся в вакууме. Понятие точечного заряда является условным, так как подобные частицы отсутствуют в действительности. Однако точечными можно считать такие заряды, размеры которых существенно меньше, чем расстояние между ними.

Сила, с которой взаимодействуют заряды в воздухе, практически не отличается от силы их взаимодействия в вакууме. В первом случае сила слабее менее, чем на одну тысячную. Электрический заряд является физической величиной и характеризует способность частиц и тел вступать в электромагнитные силовые взаимодействия.

Примечание

Первым закон взаимодействия зарядов, находящихся в состоянии покоя, открыл французский физик Ш. Кулон в 1785 году. Опытным путем ученый измерял взаимодействие между шариками с размерами намного меньше, чем расстояние между ними.

Определение

Закон Кулона: Сила, с которой взаимодействуют два неподвижных точечных электрических заряда в вакууме, прямо пропорциональна произведению их модулей и обратно пропорциональна квадрату расстояния между ними. Сила направлена вдоль прямой, соединяющей заряды, и является силой притяжения, если заряды разноименные, и силой отталкивания, если заряды одноименные.

Модули зарядов обозначают:

\(\left| q_1\right| \left| q_2 \right|\)

Таким образом, запись закона Кулона будет иметь следующий вид:\(F = k \cdot \dfrac{\left|q_1 \right| \cdot \left|q_2 \right|}{r^2} \ \)Коэффициент пропорциональности определяется выбором системы единиц:

\(k=\frac{1}{4\pi \varepsilon _0}\)

Полная формула закона Кулона:

\(F = \dfrac{\left|q_1 \right|\left|q_2 \right|}{4 \pi \varepsilon_0 \varepsilon r^2} \)

где

F — сила Кулона;

\(q_1 q_2\) — определяют электрический заряд тела;

r — расстояние, на которое удалены заряды;

\(\varepsilon_0 = 8,85*10^{-12} \) — электрическая постоянная;

\(\varepsilon\) — диэлектрическая проницаемость среды;

\(k = 9*10^9\) — коэффициент пропорциональности в законе Кулона.

Согласно третьему закона Ньютона:

\(\vec{F}_{12}=\vec{F}_{21}\)

Данные силы взаимодействия представляют собой силы отталкивания в том случае, когда заряды имеют одинаковые знаки, и являются силами притяжения при разных знаках зарядов. Для обозначения электрического заряда, как правило, используют буквы q или Q.

Исходя из совокупности данных, полученных экспериментальным путем, можно сделать следующие выводы:

  1. Электрические заряды бывают двух типов, которые условно называют отрицательными и положительными.
  2. Заряды обладают способностью передаваться (к примеру, в процессе непосредственного контакта) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемым параметром данного тела. Одно и то же тело при разных условиях может обладать неодинаковым зарядом.
  3. Заряды с одинаковым знаком отталкиваются, а с разными – притягиваются. Таким образом проявляется принципиальная разница между электромагнитными и гравитационными силами. Гравитацией всегда является сила притяжения.

Взаимодействие неподвижных электрических зарядов является электростатическим или кулоновским взаимодействием. Электростатика является отдельным разделом электродинамики, задача которого заключается в изучении кулоновского взаимодействия.

Закон Кулона применим в случае точечных заряженных тел. На практике закономерность выполняется в том случае, когда размеры заряженных тел много меньше, чем расстояние между ними. Условия выполнения закона Кулона:

  • точечность зарядов;
  • неподвижность зарядов;
  • взаимодействие зарядов в вакууме.

В международной системе СИ заряд измеряют в Кулонах (Кл).

Определение

Кулон – заряд, который проходит за 1 секунду через поперечное сечение проводника при силе тока 1 А.

Единица силы тока (Ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения.

Структура Периодической системы Менделеева

Строение атома, т. е. состав ядра, распределение электронов вокруг ядра, несложно определить по положению элемента в Периодической системе. В Периодической системе Менделеева химические элементы располагаются в определённой последовательности. Эта последовательность тесно связана со строением атома этих элементов. Каждому химическому элементу в системе присвоен порядковый номер, кроме того, для него можно указать:

  • номер периода;
  • номер группы;
  • вид подгруппы.

Зная точный «адрес» химического элемента, т. е. его группу, подгруппу и номер периода, можно однозначно определить строение его атома.

Период — это горизонтальный ряд химических элементов. В современной Периодической системе семь периодов. Первые три — малые, так как они содержат 2 или 8 элементов:

  • 1-й период — Н, Не — 2 элемента;
  • 2-й период — Li…Nе — 8 элементов;
  • 3-й период — Na…Аr — 8 элементов.

Остальные периоды — большие. Каждый из них содержит 2–3 ряда элементов:

  • 4-й период (2 ряда) — К…Кr — 18 элементов;
  • 6-й период (3 ряда) — Сs…Rn — 32 элемента. В этот период входит ряд лантаноидов.

Группа — вертикальный ряд химических элементов. Всего групп восемь. Каждая группа состоит из двух подгрупп: главной подгруппы и побочной подгруппы (см. рис. 5).

Главную подгруппу (подгруппу А) образуют химические элементы малых периодов и больших периодов. На рисунке 5 показано, что главную подгруппу пятой группы составляют элементы малых периодов (N, P) и больших периодов (As, Sb, Bi).

Побочную подгруппу (подгруппу Б) образуют химические элементы только больших периодов. В нашем случае это V, Nb, Ta.

Визуально эти подгруппы различить легко: главная подгруппа «высокая», начинается с первого или второго периода. Побочная подгруппа — «низкая», начинается с 4-го периода.

Итак, каждый химический элемент Периодической системы имеет свой адрес:

  • период;
  • группу;
  • подгруппу;
  • порядковый номер.

Например, ванадий (V) — это химический элемент 4-го периода, V группы, побочной подгруппы, порядковый номер 23.

Задание 3.1. Укажите период, группу и подгруппу для химических элементов с порядковыми номерами 8, 26, 31, 35, 54.

Задание 3.2. Укажите порядковый номер и название химического элемента, если известно, что он находится:

  1. в 4-м периоде, VI группе, побочной подгруппе;
  2. в 5-м периоде, IV группе, главной подгруппе.

Каким образом можно связать эти сведения об элементе со строением его атома?

Кулоновская сила

Концепция Кулона характеризует взаимодействие между двумя зарядами, пребывающими в состоянии покоя. Она гласит: два недвижимых заряда отталкивают либо притягивают один другого с силой, которая прямо пропорциональна произведению величин зарядов, но обратна длине расстояния между этими зарядами во второй степени. Вместе с этим, сила взаимодействия пары зарядов не может измениться при присутствии третьего.

С помощью кулоновского принципа естествоиспытатель может отыскать состояние равновесия в ситуации свободного перемещения зарядов под воздействием силы другого типа, при котором заряды будут распределяться с постоянным коэффициентом. Сила Кулона предопределена третьим законом Ньютона, который утверждает, что заряды воздействуют один на другого с силами, которые равны по модулям, но противоположны по направлениям.

Суперпозиция полей

Закон Кулона и все вытекающие из него утверждения являются лишь основой для другого, более масштабного принципа – закона суперпозиции. Исходя из этого фундаментального утверждения, силы, которые действуют на заряды, каждый из которых располагается в конкретной точке объединённой системы, являют собой сумму сил, имеющих строгое направление и формируемых отдельными группами зарядов по отдельности и влияющих на заряды в конкретных точках.


Принцип суперпозиции полей

В отличие от закона Кулона, принцип суперпозиции может быть недостаточным в рамках некоторых квантовых явлений в электрическом поле.

Электрический заряд

Нам приходится буквально отлеплять одну от другой свежевыстиранные и доставаемые из сушилки вещи, или когда мы никак не можем привести в порядок наэлектризованные и буквально встающие дыбом волосы. А кто не пробовал подвесить воздушный шарик к потолку, после трения его о голову? Подобное притяжение и отталкивание является проявлением статического электричества. Подобные действия называются электризацией.

Статическое электричество объясняется существованием в природе электрического заряда. Заряд является неотъемлемым свойством . Заряд, который возникает на стекле при трении его о шелк, условно называют положительным, а заряд, возникающий на эбоните при трении о шерсть, — отрицательным.

Рассмотрим атом. Атом состоит из ядра и, летающих вокруг него, электронов (на рисунке синие частицы). Ядро состоит из протонов (красные) и нейтронов (черные).

Носителем отрицательного заряда является электрон, положительного — протон. Нейтрон — нейтральная частица, не имеет заряда.

Величина элементарного заряда — электрона или протона, имеет постоянное значение и равна

Весь атом нейтрально заряжен, если количество протонов соответствует электронам. Что произойдет, если один электрон оторвется и улетит? У атома станет на один протон больше, то есть положительных частиц больше, чем отрицательных. Такой атом называют положительным ионом. А если присоединится один электрон лишний — получим отрицательный ион. Электроны, оторвавшись, могут не присоединятся, а некоторое время свободно перемещаться, создавая отрицательный заряд. Таким образом, в веществе свободными носителями заряда являются электроны, положительные ионы и отрицательные ионы.

Для того, чтобы имелся свободный протон, необходимо, чтобы разрушилось ядро, а это означает разрушение атома целиком. Такие способы получения электрического заряды мы рассматривать не будем.

Тело становится заряженным, когда оно содержит избыток одних или иных заряженных частиц (электронов, положительных или отрицательных ионов).

Величина заряда тела кратна элементарному заряду. Например, если в теле 25 свободных электронов, а остальные атомы являются нейтральными, то тело заряжено отрицательно и его заряд составляет . Элементарный заряд не делим — это свойство называется дискретностью

Одноименные заряды (два положительных или два отрицательных) отталкиваются, разноименные (положительный и отрицательный) — притягиваются

Точечный заряд — это , которая имеет электрический заряд.

Зачем нам нужно знать, что такое потенциал покоя и как он возникает?

Вы знаете, что такое «животное электричество»? Откуда в организме берутся «биотоки»? Как живая клетка, находящаяся в водной среде, может превратиться в «электрическую батарейку» и почему она моментально не разряжается?

Совершенно очевидно, что для понимания того, как работает нервная система, необходимо вначале разобраться, как работает её отдельная нервная клетка — нейрон. Главное, что лежит в основе работы нейрона — это перемещение электрических зарядов через его мембрану и появление вследствие этого на мембране электрических потенциалов. Можно сказать, что нейрон, готовясь к своей нервной работе, вначале запасает энергию в электрической форме, а затем использует ее в процессе проведения и передачи нервного возбуждения.

Таким образом, наш самый первый шаг к изучению работы нервной системы — это понять, каким образом появляется электрический потенциал на мембране нервных клеток. Этим мы и займёмся, и назовём этот процесс формированием потенциала покоя.

Электроемкость, конденсатор и напряженность электрического поля

Величина С, равная заряду q, который требуется сообщить проводнику с целью повышения его потенциала, называется электроёмкостью.

Размер и форма проводника формируют величину электроёмкости, как и свойства диэлектрика, который разделяет проводники. В физике имеет значение один тип систем, сосредоточивающий электрическое поле в определённой месте пространства. Он носит название «конденсатор», который, в свою очередь, состоит из проводников, именуемых обкладками.

Данный тип систем являет собой конфигурацию проводников, которую составляют две плоские проводящие пластины, расположенные параллельно друг другу на маленьком расстоянии и отграниченные слоем диэлектрика.

Электрический диполь

Данный термин обозначает элементарную совокупность точечных зарядов, которые имеют системные признаки. Диполем называется сумма зарядов, противозначных, но равных по величине, и сдвинутых один от другого на определённое расстояние.

Диполи бывают разные, но наибольшее внимание физическая наука уделяет точечным диполям. Так называются диполи, которые характеризуются пренебрежимо маленьким расстоянием от отрицательного заряда до положительного

Если в теории совокупность зарядов разделить на множество частей, её можно будет рассматривать как систему электрических диполей.


Электрический дипольный момент

Закон сохранения электрического заряда

И последнее, о чем мы сегодня поговорим — этот закон сохранения заряда

Звучит он так:

Алгебраическая сумма зарядов электрически замкнутой системы сохраняется.

Закон сохранения заряда

q1 + q2 + q3 + … + qn = const

q1, q2, q3, …, qn — заряды электрически замкнутой системы

Задачка раз

У нас есть два металлических шарика. Один имеет положительный заряд 2q, а другой — отрицательный −3q. Шарики соприкасаются, после чего их разъединяют. Каков конечный заряд каждого шарика?

Решение:

Для решения этой задачи нам нужно найти алгебраическую сумму зарядов.

2q − 3q = −1q.

Это суммарный заряд шариков и до, и после и во время взаимодействия.

Так как суммарный заряд сохраняется, но шарики соприкоснулись, суммарный заряд разделится между всеми шариками поровну. То есть нам нужно суммарный заряд просто поделить на количество шариков — на 2.

−1/2 = −0,5q.

И это ответ к нашей задаче.

Ответ: конечный заряд каждого шарика будет равен −0,5 Кл.

Задачка два

Металлическая пластина, имевшая положительный заряд, по модулю равный 10е, при освещении потеряла шесть электронов. Каким стал заряд пластины?

Решение:

У положительно заряженной пластины 10e забрали 6 электронов. Заряд одного электрона равен −е. Спасемся математикой и посчитаем:

q = q₀ − 6(−e) = 10e + 6e = 16e

Красный знак «минус» образуется из-за того, что мы «отнимаем» электроны, а зеленый — из-за того, что электрон отрицательный. «Минус на минус» дает плюс, поэтому мы получаем 10e + 6e = 16е.

Ответ: 16е

Задачка три

Имеются два одинаковых проводящих шарика. Одному из них сообщили электрический заряд +8q, другому −4q. Затем шарики привели в соприкосновение и развели на прежнее расстояние. Какими стали заряды у шариков после соприкосновения?

Решение:

По закону сохранения заряда сумма зарядов в замкнутой системе остается постоянной.

+8q − 4q = + 4q

Два шарика привели в соприкосновение и развели, значит их суммарный заряд разделится между шариками поровну.

+4q/2 = +2q

Ответ: заряд каждого шарика равен 2q.

Электростатическая индукция

Кажется, с электризацией разобрались. Теперь разберемся, что произойдет, если мы поднесем одно тело к другому, но не вплотную. Произойдет такое явление, как электростатическая индукция — явление перераспределения зарядов в нейтрально заряженных телах.

Давай разбираться на примере задачи:

На нити подвешен незаряженный металлический шарик. К нему снизу поднесли положительно заряженную палочку. Как изменится при этом сила натяжения нити?

Решение:

Здесь важно подчеркнуть, что незаряженный — значит заряжен нейтрально. То есть в теле равное количество положительных и отрицательных зарядов

Электроны металлического шарика будут перемещаться вниз и притягиваться к поднесенной положительной палочке. В результате шарик притягивается к палочке, следовательно, сила натяжения нити увеличивается.

Ответ: сила натяжения нити увеличивается

Потенциальная энергия электрического заряда и потенциальность полей

Заряды наполняют электрическое поле. Они двигаются по некоторым замкнутым траекториям. Величины работы их сил равняются нулю, и потому эти силы (или силовые поля) именуют потенциальными. Считается, что некоторые виды электрических полей, в частности, электростатическое поле, обладает свойством потенциальности изначально. Это доказанная теория, и она не требует новых исследований.

Потенциальная энергия

Благодаря свойству потенциальности физики могут судить о том, что потенциальная энергия присуща каждому электрическому заряду в конкретном поле. Наглядно проиллюстрировать этот принцип можно так: в пространстве имеется конкретная точка, в которую может быть перемещён конкретный заряд, величина потенциальной энергии которого будет равна нулю.

Силовые линии

Из закона потенциальности полей вытекает концепция его силовых линий. В действительности подобных объектов в вещественном виде не существует. Это графический инструмент, который позволяет изобразить электрическое поле для визуального схематического наблюдения и исследования. Через представление густоты и числа линий можно проиллюстрировать направление напряжённости поля, а также его величину.

Изображение силового поля

Напряжённость электрического поля

Напряжённость электрического поля – второй по значимости термин в теории об электричестве после электрического заряда. Если естествоиспытатель знает всё хотя бы об этих двух понятиях, он сможет проводить простейшие опыты с электричеством и подкреплять их знаниями из элементарного курса физики.

Напряжённость – это сила, воздействующая на отдельный статичный заряд. Исходя из общепринятых норм можно сказать, что напряжённость электрического поля обозначается символом Е. Стоит отметить, что напряжённость является векторной величиной, а электрический заряд – скалярной.


Напряжённость электрического поля

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Стройняшка
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: